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Abstract. We present a fast and well documented two-stream algorithm for radiative transfer and
particle transport in vertically inhomogeneous, layered media. The physical processes considered
are internal production (emission), scattering, absorption, and Lambertian reflection at the lower
boundary. The medium may be forced by internal sources as well as by parallel or uniform incidence
at the top boundary. This two-stream algorithm is based on a general purpose multi-stream discrete
ordinate algorithm released previously. It incorporates all the advanced features of this well-tested
and unconditionally stable algorithm, and includes two new features: (i) corrections for spherical
geometry, and (ii) an efficient treatment of internal sources that vary rapidly with depth. It may
be used to compute fluxes, flux divergences and mean intensities (actinic fluxes) at any depth
in the medium. We have used the numerical code to investigate the accuracy of the two-stream
approximation in vertically inhomogeneous media. In particular, computations of photodissociation
and warming/cooling rates and surface fluxes of ultraviolet and visible radiation for clear, cloudy and
aerosol-loaded atmospheres are presented and compared with results from multi-stream computations.
The O3 + hv — O('D) + O; and O3 + hv — O(*P) + O, photodissociation rates were considered
for solar zenith angles between 0.0-70.0° and surface albedos in the range 0.0-1.0. For small and
moderate values of the solar zenith angle and the surface albedo the error made by the two-stream
approximation is generally smaller, < 10%, than the combined uncertainty in cross sections and
quantum yields. Surface ultraviolet and visible fluxes were calculated for the same range of solar
zenith angles and surface albedos as the photodissociation rates. It was found that surface ultraviolet
and visible fluxes may be calculated by the two-stream approximation with 10% error or less for
solar zenith angles less than 60.0° and surface albedos less than 0.5. For large solar zenith angles
and/or large surface albedos, conditions typical at high latitudes, the error made by the two-stream
approximation may become appreciable, i.e. 20% or more for the photodissociation rates in the
lower stratosphere and for ultraviolet and visible surface fluxes for large surface albedos. The two-
stream approximation agrees well with multi-stream results for computation of warming/cooling
rates except for layers containing cloud and aerosol particles where errors up to 10% may occur. The
numerical code provides a fast, well-tested and robust two-stream radiative transfer program that can
be used as a ‘software tool’ by aeronomers, atmospheric physicists and chemists, climate modellers,
meteorologists, photobiologists and others concerned with radiation or particle transport problems.
Copies of the FORTRAN77 program are available to interested users.

Key words: Radiative transfer, spherical geometry, photodissociation, photolysis, J-values, warm-
ing/cooling, clouds, aerosols, errors, two-stream, algorithm.
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In spite of the profilic literature on various two-stream and related Eddington
approximations, documentation is still lacking pertaining to the adequacy of this
method for the computation of radiative warming/cooling and photodissociation
rates and surface fluxes in vertically inhomogeneous atmospheres containing cloud
and aerosol layers. Therefore, an important aspect of this paper is to provide assess-
ments of the accuracy provided by this simple approximation for such computations
under realistic atmospheric conditions.

The paper is organised as follows. In Section 2 theoretical aspects of the two-
stream method are briefly discussed. Matters concerning the numerical imple-
mentation are discussed in Section 3. The accuracy of the two-stream method is
thoroughly discussed in Section 4. Finally, in Section 5, a brief summary of the
paper is given.

2. Theory
2.1. BASIC EQUATIONS

Knowledge of the mean intensity and fluxes is sufficient to compute photodissocia-
tion and warming/cooling rates and radiation doses. Thus, we start with the discrete
ordinate approximation to the radiative transfer equation pertinent for the diffuse,
azimuthally-averaged, monochromatic intensity I(7, u) (cf., e.g., Chandrasekhar,
1960; Stamnes, 1986)

dI(r, p)
dr

where the source function S(7, u) at optical depth 7 and polar angle § = cos™! p

in the two-stream approximation (hereafter referred to as TSA*) is

S(T’ ﬂ) = a‘(T)b(Tv #)I(Tv "'}I/l)+
+a(T)[1 - b(T> /"’)]I(T’ +ﬂ1) +Q(T7 /,l,)

Here p; is the quadrature angle, a(7) the single scattering albedo and Q(7, ) the
internal source. Furthermore, the backscattering coefficient

b(r, p) = 3(1 = 3g(r)upm1), 3)

describes the probability that a photon upon scattering will change direction from
one hemisphere to the other. The asymmetry factor g(7) is 1.0 for complete forward
scattering, —1.0 for complete backward scattering and 0.0 for isotropic scattering.
Polarization is not accounted for in this model. Results provided to us by P. Stamnes
(personal communication, 1993), suggest that the neglect of polarization introduces
errors of 1-2% in fluxes and the mean intensity for a Rayleigh scattering atmo-
sphere. Errors of this magnitude may be ignored in most applications which use
two-stream radiative transfer models.

2 = I(r, p) = S(7, p), (1)

2

* For a clear and simple derivation of the TSA and discussion of observable phenomena which
can only be explained by multiple scattering, see Bohren (1987).
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1. Introduction

For a number of problems in atmospheric science, it is of paramount importance
to know the radiation field for a variety of atmospheric conditions. For example,
computation of atmospheric photodissociation rates requires the mean intensity
(proportional to the actinic flux) as a function of wavelength and altitude. Simi-
larly, the mean intensity (or the flux divergence) is required to compute radiative
warming/cooling rates. Assessment of the biological impact of ultraviolet radiation
also requires the knowledge of the incident irradiance to enable computation of
the appropriate dose rate. The proper definitions of these various rates are given in
Section 4.1. It is sufficient to note here that all of them require integrations over
wavelength and will therefore be computer-intensive.

Due to the computational burden involved in computing these radiative quan-
tities, it is desirable to have available fast, yet accurate, and reliable algorithms
for computation of the radiation field in an atmosphere under a variety of dif-
ferent conditions. In particular, the effects of clouds and aerosols on atmospheric
radiation must be treated in a consistent manner. It is also important to include
spherical geometry in order to calculate the radiation field correctly for low solar
elevations.

Numerous papers have appeared over the years on various two-stream and
closely related Eddington approximations for radiative transfer calculations. Most
of these papers have discussed the validity of this approximation for a single
homogeneous layer. The differences between various two-stream and Eddington
approximations reported in the literature can be traced to the choice of numerical
quadrature (or integration over polar angle), the implementation of the boundary
conditions, and the treatment of the phase function for anisotropic scattering. For
a discussion of the relationship between these methods, we refer to three articles
in which their relative merits are also compared and assessed: Meador and Weaver
(1980). Zdunkowski et al. (1980), King and Harshvardhan (1986). Applications
to particle transport problems are discussed in Nagy and Banks (1970), Stamnes
(1981), Stamnes et al. (1991) and Kylling and Stamnes (1992).

In this paper, we describe a new numerical implementation of the two-stream
method for solving the linear transport equation applicable to radiation trans-
fer as well as particle transport in vertically inhomogeneous layered media. The
method is based on the well-tested and widely used discrete ordinate method of
Stamnes et al. (1988), and incorporates all the advanced features of that method.
In particular, the ill-conditioning problem that occurs when two or more layers are
combined is entirely eliminated. In the delta-Eddington code (Wiscombe, 1977a),
this problem was dealt with by subdividing layers. No such subdividing is neces-
sary in the present code. As was the case with the general purpose discrete ordinate
code released previously, we have attempted to make this two-stream code well-
documented and error-free to facilitate its safe use both in data analysis and as a
component of large models.
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Fig. 1. The division of the atmosphere into L adjacent homogeneous layers.
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Integration of Equation (1) over 4= steradians yields the following exact relation

dF(r —

) — (1~ )0 - @), an
-

where the net flux F(7) = F*(7) — F~ (7). For thermal sources we get

dF(t e

PO — 41— )T - BT (12

In the numerical code the flux divergence is calculated from the mean intensity by
Equation (12) and not by differencing fluxes. Note that in Equations (11) and (12)
the mean intensity refers to the sum of diffuse and direct radiation.

3. Numerical Implementation and Verification

3.1. 6—M TRANSFORMATION

To accommodate strongly forward-peaked phase functions we use the 6—M trans-
formation (Joseph et al., 1976; Wiscombe, 1977b) in which the forward scattering



118 A. KYLLING, K. STAMNES, AND S.-C. TSAY

For atmospheric radiation problems the internal source Q(7, ) is given by

Q(r, p) = QU™(r) + Q**™(r, p), )
where

QMer™l(7) = [1 — a(7)]B[T(7)], Q)

Q=(r, ) = U Er(1 = 39(r)ppsg)e= M 1), ©®

Here B[T(7)] is the Planck function at the local temperature 7" and ch(r, po)
the Chapman function describing the optical path through a spherical atmosphere.
In plane parallel (slab) geometry, the Chapman function is simply 7/, i.e., the
slant optical path. In a curved atmosphere the slant path becomes less than in
slab geometry (Section 4.4 and Appendix B). Equation (6) is the solar pseudo-
source arising from the usual diffuse-direct intensity splitting (recall that I(7, )
in Equation (1) describes the diffuse intensity only). Thus, puoF* is the vertical flux
resulting from parallel beam radiation incident at the top boundary in direction
0o = cos™! .

When evaluated at the quadrature points, Equation (1) leads to two coupled dif-
ferential equations. Since the single-scattering albedo a(7) and the phase function
p(7, cos©) are functions of position 7 in a vertically inhomogeneous medium,
no analytic solutions exist for these two coupled differential equations. To obtain
analytic solutions, the medium is divided into L adjacent homogeneous layers in
which the single scattering albedo and the asymmetry factor are taken to be con-
stant within each layer (but are allowed to vary from layer to layer, as illustrated in
Figure 1), and the internal source is approximated by an exponential times linear
function in 7 (Appendix A). Thus, it is sufficient to consider a single homogeneous
layer for which 7,_; < 7 < 73,. Evaluating Equation (1) at the quadrature points

(1 and pr_; = —p 1) we obtain the usual two-stream approximation (TSA) for any
layer p in Figure 1
art + - _o+t
G =Tt = a1 = )I* = abl” = Q* (), @
T
di—
—‘Hl—d—“:I_—a(l—b)I_—abI+_Q_(T)a ®)
T

where a = a(7p) and b = b(7,). The solution of Equations (7)—(8) together with
appropriate boundary conditions is outlined in Appendix A.

2.2. FLUXES, MEAN INTENSITY (ACTINIC FLUX) AND FLUX DIVERGENCE

Upward and downward fluxes and mean intensities are readily calculated in the
TSA

2 1
FE(r) = / a6 [ dunl(r, u, ¢) = 2muI*(r), ©)
0 0



A RELIABLE AND EFFICIENT TWO-STREAM ALGORITHM 121

T T T
1.0 o 2.0 b)
-]
o
s
- 05 o 1.5p
F9) g 5
2] \ N=3
E El) \\/
1 .: .
3 o0 8 10K,
[} fé ~ R
w0 ° SN
: LI
« 3] 05 N=1 \\\
-0.5 B8 05T
o \‘\- _‘/
& PN
-1.0 s . : 0.0 . N=Z
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Asymmetry factor, g Asymmetry factor, g

Fig.2. In(a)is shown the different b; terms in the expansion of the backscattering coefficient,
Equation (13). The different backscattering coefficients obtained for different choices of N
are shown in (b). Note that the backscattering coefficients for N = 1 and N = 2 are
indistinguishable.

negligible (Figure 2). The fourth term involving P4 () contributes for [g| > 0.5 if
we use a Heyney—Greenstein phase function. However, if the §—M transformation
is invoked, (Section 3.1), then 0 < ¢’ < 0.5 for the Heyney—Greenstein phase
function. Finally, the fifth term contributes negligible for all values of g. Hence, in
the TSA it is sufficient to include only the two first terms in the expansion of the
backscattering coefficient (cf. Equations (3) and (6)).

3.3. QUADRATURE RULE

Possible choices for the quadrature rule in the two stream approximation include
Gaussian full-range quadrature based on the interval [—1, 1] or half-range (double-
Gaussian) quadrature based on the ranges [—1, 0] and [0, 1] separately. For general
multi-stream algorithms it is preferable to use double Gaussian quadrature as dis-
cussed by Stamnes et al. (1988). However, in the two stream approximation double
Gaussian quadrature (x; = 0.5) gives an unphysical backscattering coefficient
b= 1/8 for g = 1. The choice ;1; = 1/+/3 (full-range Gaussian quadrature) gives
the physically correct value b = 0. We have computed both mean intensities and
fluxes, (Tables I-V), with z; equal both 1/2 and 1/+/3. For a beam source, the
quadrature angle z2; = 1/+/3 gives the overall best results for quantities integrated
over both hemispheres, such as the mean intensity and the flux divergence, as well
as for quantities integrated over single hemispheres, e.g. upward and downward
fluxes. However, for thermal sources u; = 1/2 gives the best overall results.
Hence, we recommend the use of 1 = 1/+/3 for beam sources and x; = 1/2 for
thermal sources.

For a beam source, Meador and Weaver (1980) stated that ‘u; = 1/ V3 is not the
appropriate choice for ensuring accuracy to the maximum polynomial degree for
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peak is approximated by a 6-function while the remainder is expanded in Legendre
polynomials as usual. This leads to the replacement of d7 with d7’ = (1 — af)dr,
g with ¢' = (g — f)/(1 — f), awith @’ = (1 = f)a/(1 — af), and Q*(r, p)
with Q% (7, n) = Q*(r, 1)/(1 — f) in the transport equation. In the TSA we
choose the truncated fraction f of the phase function to be g% which is consis-
tent with a two-term expansion of the phase function in Legendre polynomials
and assuming that the angular scattering can be adequately approximated by a
Henyey—Greenstein phase function (Joseph et al., 1976). The great advantage of
the 6—M transformation is that these scaling changes incurred by the truncation
of the forward-scattering peak of the phase function leaves the mathematical form
of the transport equation unchanged. Thus, the 6—M transformation merely makes
the scattering appear more isotropic, and whatever approaches (including the TSA)
available to solve the unscaled equation can be readily applied to solve the scaled
equation. For strongly forward-peaked scattering the solution of the scaled equa-
tion, however, yields far more accurate results than the solution of the unscaled
equation. The computer code has an option for turning the 6—M transformation on
and off as desired.

3.2. PHASE FUNCTION EXPANSION

The complete expression for the backscattering coefficient is

b(r, p) = 1 [y du'p(—p, 1)
= LS 2N-N )bt + D Pi(p) fy dw' P(w) (13)
= YT, p).

The angular scattering is described by the phase function p(7, cos©); © is the
scattering angle, and p(—u, p') is the azimuthally-averaged phase function. The
moments of the phase function are given by

1
xi=1 /_ Al WP, (14)

The first moment of the phase function is usually referred to as the asymmetry
factor x; = g.

In the TSA method only the first two terms (n = 1 in Equation (13)) in the
phase function expansion are normally used. To justify the use of N = 1 in
Equation (13) we note the following. For a quadrature angle y; = 1/ /3, which
is a much used choice in the TSA corresponding to the use of full-range Gaussian
quadrature, P5(1) = 0.* Thus, there is no contribution from the second term in
Equation (13). Furthermore, the contribution from the third term in Equation (13) is

* The first few Legendre polynomials are Po(p) = 1, Pi(p) = u, P(p) = 13 - 1),
Py(n) = L(51% = 3p), Pa(p) = §(35p* — 30p? +3), Ps(p) = §(63p° — 70u° + 15p).
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TABLE 1. Single layer results for the diffuse upward and downward fluxes at the top and bottom
of the layer. The surface albedo Ay = 0.0 for all five cases. The exact values are from Wiscombe
(1977a) and Lenoble (1985), while Twostr refers to the present method

Case o Ttot a g F*(0) Error  F~ (7o) Error
Exact Twostr [%] Exact Twostr [%]

1.000 1.00 1.0000 0.7940 0.173 0.174 065 1813 1812 -0.07
1.000  1.00 0.9000 0.7940 0.124 0.133 7.03 1516 1.522 0.38
0.500 1.00 09000 0.7940 0.226 0221 -2.14 0.803 0.864 7.59
1.000 64.00 1.0000 0.8480 2.662 2.683 0.81 0.480 0454 -5.50
1.000 64.00 0.9000 0.8480 0376 0376 -0.05 0.000 0.000 0.00

WA W N -

the integrands in the integrals with limit 0 and I’. The reason for this statement is
that for thin atmospheres negative reflectances are obtained when g > 1/(v/3p0),
(cf. Equation (6)). However, if the §—M transformation is invoked then |¢'| < 0.5
for Heyney—Greenstein phase functions implying that ¢’ < 1/(v/3u0) is always
true. Hence, negative reflectances are not a problem with the quadrature method
when it is combined with the —M transformation (see also King and Harshvarhan
1986, Joseph et al., 1976).

In the classification system of Meador and Weaver (1980) the present two-
stream method is a quadrature method with v; = (v/3/2)(2 — a(1 + 9)), 12 =
(v3a/2)(1 — g) and v3 = (1/2)(1 — V3guo) for u; = 1/+/3 when the 6—
M transformation is not invoked. With the 6—M transformation it is similar to
the §-two-stream method (or d-discrete ordinate) (King and Harshvardhan, 1986;
Schaller, 1979).

3.4. AVOIDANCE OF SINGULARITIES

The inhomogeneous solution to Equations (7)—(8) contains exponentials with argu-
ments proportional to a constant « (see Appendix). As noted by Kylling and
Stamnes (1992) values of « (cf. Equation (22)) close or equal to any of the eigen-
values k require special consideration. The reason is that the particular solution due
to an internal source becomes infinite as the denominator in Equations (24)—(25)
approaches zero. To handle this case numerically we use so-called ‘dithering’ which
consists of keeping o away from & by a prescribed small amount which depends
on machine architecture. For single precision calculations on a 32 bit machine
satisfactory results are obtained by making « deviate from k by two percent.

3.5. COMPARISON WITH EXACT RESULTS

The accuracy of both the beam source and the thermal source solutions must be
tested. For the beam source we use the same tests as those utilised by Toon et
al. (1989) to compare their two-stream radiation model with exact results (cf.
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TABLE III Single layer results for the mean intensity for conservative Rayleigh scattering (a = 1,
g = 0). The exact values are from Wiscombe (1977a) and Lenoble (1985), while Twostr refers to
the present method

1o T Ay =0.00 Error Ay =0.25 Error Ay = 0.80 Error
Exact Twostr [%] Exact Twostr [%] Exact Twostr [%]
4m1(0)/F*
0.10 0.02 1.045 1016 -2.8 1.089 1.061 -2.6 1.187 1.161 2.2
0.10 0.25 1.170 1.085 -7.3 1.189 1.107 -69 1239 1.165 -6.0
0.10 1.00 1212 1.119 -7.7 1220 1.128 -7.5 1247 1.166 -6.5
040 0.02 1.047 1.017 -29 1235 1.210 -2.1 1.653 1.640 -0.8
040 025 1.284 1.164 -93 1402 1.296 -7.5 1.707 1.645 -3.7
040 1.00 1.534 1374 -104 1584 1.431 -9.7 1.778 1.650 =72
0.92 002 1040 1.017 22 1477 1.467 -0.7 2453 2471 0.7
092 025 1279 1.191 -6.9 1.597 1.542 -34 2404 2466 2.6
092 1.00 1.691 1.572 -7.1 1.851 1.754 -52 2398 2457 2.5
47rm/ F
0.10 0.02 0.864 0.834 -34 0912 0.881 -34 1.018 0.985 =33
0.10 025 0.192 0.156 -18.6 0224 0.188 -16.1 0307 0.271 -11.6
0.10 1.00 0.057 0.054 -4.4 0.082 0.081 -1.1 0.168 0.183 9.2
040 0.02 0998 0.968 -3.0 1203 1.168 -29 1.661 1.613 -2.9
040 025 0.787 0.693 -11.9 0988 0.883 -10.6 1.502 1.382 -8.0
040 1.00 0385 0344 -10.6 0.540 0.500 -74 1.071 1.099 2.6
092 0.02 1018 0996 2.2 1495 1.461 -23 2.561 2.500 2.4
092 0.25 1.028 0950 -7.6 1560 1.453 -6.9 2928 2776 -5.2
092 1.00 0.881 0.822 -6.7 1384 1320 —4.6 3.109 3.241 42

TABLE 1V. Upward and downward fluxes and the flux divergence for a single layer in limit the
a = 0 and a = 1. The temperature at the top of the layer is 270.0 K and 280.0 K at the bottom. It
is assumed to vary linearly across the layer. The surface temperature is 0.0 K for the a = 0 cases
and 300.0 K for the a = 1 case. The Planck function is integrated over the interval 0.0-10,000.0
cm™!. Exact results are from 16-stream calculations by the DISORT algorithm. The asymmetry
factor g = 0.0

T a F*(0) Error F~ (1) Error
Exact Twostr [%] Exact Twostr [%]
1.0 0.0 248.2 274.2 10.5 259.1 287.0 10.8
1000.0 0.0 301.4 301.4 0.0 348.5 348.5 0.0
10.0 1.0 53.623 41.791 -22.1 405.674 417.553 2.9
T a dF(0)/dr Error dF(r)/dr Error
Exact Twostr [%] Exact Twostr [%]
1.0 0.0 -669.4 -656.9 -1.9 -823.4 -820.1 -0.4
1000.0 0.0 -602.6 -602.6 0.0 -697.1 -697.1 0.0

10.0 1.0 0.000 -0.013 0.0 0.000 0.004 0.0
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to calculate the radiative warming/cooling rate, which for an atmosphere in local
thermodynamic equilibrium is given by, cf. Equation (12),

or _ __1 OFG) _ _4mdr . 2T - BIT(-). (16)

ot Cpp 0z __Cppdz

Here OF (z)/0z is the flux divergence, C,, is the specific heat at constant pressure
and p the air density. Furthermore, 7 is the optical depth, a the single scattering
albedo and B[T'(7)] the Planck function at the local temperature 7. The downward
flux is required to compute the dose rate and the total dose D. The dose rate is
given by

dD Y

— = dANA(MNF~ (1, ). 17

dit A
Here A()) is the appropriate action spectrum and the integration extends over the
spectral range across which the biological effects are incurred (cf. e.g., Dahlback et
al., 1989). The use of downward flux in Equation (17) assumes that the radiation is
received by a horizontally oriented plane surface. For some biological applications,
such as exposure of small ‘bodies’ suspended in air or in water (e.g., phytoplankton
in the ocean), it may be more appropriate to use the integrated intensity or actinic
flux (i.e., 47 times the mean intensity) instead of the irradiance analogous to what
is done for the photodissociation rate. Note also that Equation (17) refers to the
instantaneous dose rate. The actual dose requires integration over the time of
exposure.

Accurate and fast computation of photodissociation and warming/cooling rates
and surface fluxes is desirable in a number of atmospheric applications. Using
the present TSA code we have computed photodissociation and warming/cooling
rates and surface ultraviolet and visible fluxes for vertically inhomogeneous clear,
cloudy and aerosol-loaded atmospheres. After discussing the spectral resolution,
the atmospheric models used and the importance of spherical geometry, we compare
TSA results with accurate multi-stream computations to estimate the error incurred
by using the TSA.

4.2. SPECTRAL RESOLUTION

Photodissociation, warming/cooling and dose rates, Equations (15)—(17), are com-
puted by replacing the integral over wavelength by a sum. The wavelength range is
divided into a number of intervals depending on the specific application. Madronich
and Weller (1990) investigated how the gridsize influence tropospheric photodis-
sociation rates. It was found that the grid recommended by WMO (1986) may give
errors of 10% or more for some photodissociation processes (e.g. CH,0) while
for other processes the errors were negligible. To our knowledge, no such study
has been made for stratospheric photodissociation rates. The WMO (1986) grid
has 50 bins with 500.0 cm~! gridsize in the range 175.4-307.7 nm and a 5.0 nm
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Tables IV, V and VI in their paper). Results from the present two-stream model
are shown in Tables I-V. (Note that there are some misprints in Table V of Toon
et al. (1989), which have been corrected in the present Table II). Generally the
errors made by the present two-stream method are similar or smaller than those
reported by Toon et al. (1989). Since we are solving the same problem as Toon et
al. (1989), the slightly different results between the two solution methods are due
to numerical roundoff errors. We note that running these tests without invoking
the §—M transformation increases the errors dramatically for strongly asymmetric
phase functions.

In Tables IV and V, we present results for the thermal source. The upward and
downward fluxes and the flux divergence as computed by the present two-stream
algorithm and ‘exact’ 16-stream results obtained by the multi-stream discrete-
ordinate algorithm of Stamnes et al. (1988; DISORT) are shown in Table IV. The
16-stream computations are accurate to 3—4 digits and considered as ‘benchmark’.
The tests for @ = 0 are ‘extreme’ because the TSA is known to break down
in this limit (Toon et al., 1989). These tests must thus be considered as worst
cases. As can be seen the error is never larger than 10.8% for exiting fluxes while
the error for the flux divergence is negligible. For a = 1 the flux is conserved,
hence the flux divergence should be zero. DISORT does indeed yield dF'/dT = 0,
while the TSA code yields slightly non-zero values. In Table V single layer TSA
results are compared with multilayer DISORT results taken from Table I of Kylling
and Stamnes (1992).* Optical depths of 7 = 0.1, 1.0, 10.0 and 100.0, single
scattering albedos of @ = 0.1 and 0.95 and asymmetry factors of g = 0.05 and
0.75 are considered. The two-stream results differ from the multi-stream results by
maximum 12.9%. These errors are attributed to the TSA and not the single layer
approximation. Single layer multi-stream calculations with an exponential-linear-
in-optical-depth internal source approximation show no or very little difference
with multilayer results (Table I, Kylling and Stamnes, 1992).

4. Accuracy of the TSA for Realistic Applications

4.1. PHOTODISSOCIATION RATE, WARMING/COOLING RATE AND BIOLOGICALLY
EFFECTIVE DOSE RATE

For the calculation of photodissociation rates
oo —_—
J(z) = 4n / dAg(Ne NIz, N, (15)
0

the mean intensity I(z, \) at wavelength A and altitude z is required in addition to
the appropriate quantum yields ¢(A) and cross sections (). Note that the actinic
flux is 47 x mean intensity (Madronich, 1987). The mean intensity is also required

* In the caption of Table I of Kylling and Stamnes (1992) there is a misprint. The values for a
and g have been interchanged. The correct values, provided in the text of that paper, are a = 0.95,
g =0.75.
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Fig. 3. The temperature and ozone profiles for the midlatitude (solid lines) and the subarctic
(dotted lines) atmospheres (Anderson et al., 1987).

Also shown, are extinction coefficient profiles for moderate, high and extreme vol-
canic aerosol loading situations. The tropospheric aerosols are made from a variety
of natural and anthropogenic chemical compounds. Their optical properties are
parameterized in terms of the surface visibility. The extinction coefficient at 550.0
nm is shown for several visibilities in Figure 4.

The extreme volcanic aerosol model is representative for aerosol conditions
associated with major volcanic eruptions, such as Mt. Agung (1963), El Chichon
(1982) and Mount Pinatubo (1991). The optical properties of the aerosol layer
change with time due to removal of aerosols and due to changes in the composition
of the aerosols caused by photochemical and chemical processes. The different
aerosol models shown in Figure 4 represent various stages in the evolution of
the stratospheric aerosol layer after a volcanic eruption. The time evolution will
vary with the magnitude, location and time of the eruption. The extreme aerosol
situation implies the strongest scattering of radiation and thus leads to the largest
discrepancy between the TSA and multi-stream calculations. Hence, it was adopted
for the accuracy study performed in this paper. For the troposphere, we used the
model with a surface visibility of 50.0 km giving a tropospheric optical depth of
7 ~ 0.14 at 550.0 nm. The globally averaged optical depth of tropospheric aerosols
has been estimated to be 7 ~ 0.1 (Hansen and Lacis, 1990), which is somewhat
lower than the value adopted here.
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gridsize for larger wavelengths. For the calculation of photodissociation and solar
warming rates we adopted the spectral resolution recommended by WMO (1986)
except between 302.0 and 314.0 nm where a gridsize of 1.0 nm was used.

Dose rates are very sensitive to the rapid change in the ozone cross section
between 280.0-360.0 nm. The resolution given in WMO (1986) is to coarse to
yield accurate UV-B and UV-A dose rates. Hence, a 1.0 nm resolution was adopted
for the calculation of dose rates.

In the terrestrial part of the spectrum the absorption cross sections vary rapidly,
erratically and by several orders of magnitude within short wavenumber intervals.
Hence, the integration over wavelength is a nontrivial task. It is beyond the scope
of this paper to review all the different approximations methods for performing the
integration over wavelength (see Goody and Yung, 1989, for a recent review). In
this study the correlated-k distribution method (Lacis and Oinas, 1991) was utilized.
The wavenumber region 0.0-2,000.0 cm~! was divided into 10.0 cm™! intervals.
In each interval 50 monochromatic radiative transfer calculations were performed.
Absorption by carbon dioxide, ozone and water molecules was accounted for.
The procedure used to obtain the correlated-k distribution is described in Kylling
(1992). We note that the correlated-k distribution method allows multiple scattering
to be included. Furthermore, it accounts for the change of the absorption line shapes
with pressure thus allowing the troposphere and the stratosphere to be treated in a
unified manner.

4.3, ATMOSPHERIC MODELS

In order to calculate the optical depth, single scattering albedo and asymmetry
factor, the composition of the atmosphere must be known. Below we describe the
atmospheric models used in the present study.

4.3.1. Trace Gas and Temperature Profiles

Ozone, carbon dioxide, nitrogen dioxide, water vapour and temperature profiles
were taken from Anderson et al. (1987). The ozone and temperature profiles for
the midlatitude summer and subarctic summer atmospheres used in this study are
shown in Figure 3. The midlatitude summer and subarctic summer atmospheres
have ozone contents of 335.7 DU and 349.0 DU respectively. The models have 50
unevenly spaced grid points between 0.0-120.0 km.

4.3.2. Aerosol Models

Both stratospheric and tropospheric aerosols affect the radiation field. The strato-
spheric aerosol layer is situated between 15 and 25 km and is composed primarily
of sulfuric acid (Turco et al., 1982). Being mainly of volcanic origin the strato-
spheric aerosol layer has a high degree of natural variability. A typical profile of
the extinction coefficient for background aerosol conditions is shown in Figure 4.
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a 1/pg factor (up is the cosine of the solar zenith angle) is used instead of the
Chapman function in Equation (6). Plane parallel calculations thus overestimates
the optical depth of the medium and underestimates the radiation field. For solar
zenith angles less than 95° a ‘pseudo-spherical’ approximation is adequate for the
calculation of fluxes and the mean intensity (see e.g. Dahlback and Stamnes, 1991).
In the ‘pseudo-spherical’ approximation the direct beam attenuation is computed
correctly using spherical geometry (cf. the Chapman function in Equation (6));
otherwise the plane-parallel assumption is retained. For solar zenith angles larg-
er than 95° this ‘pseudo-spherical’ approximation becomes inadequate because it
overestimates the mean intensity as discussed by Dahlback and Stamnes (1991).

Figure 5 exemplifies the importance of including spherical geometry by showing
photodissociation rates for the two different ozone channels, J(O3) : O3 + hv —
0, + O(’P) and J(O%) : O3 + hv — Oy + O(!D), calculated in plane-parallel
and spherical geometry for twilight conditions. The rightmost column shows how
the rates behave when the sun is below the horizon. Neglecting spherical geometry
gives J(O3) values that are an order of magnitude to low at the surface for a solar
zenith angle of 89.0°, cf. panel (a) and (b) in Figure 5. The difference decreases
with increasing altitude and decreasing solar zenith angle, the plane-parallel J(O3)
value being a factor 2 to low at 20.0 km for §; = 89.0°. The very abrupt change
in the J-profiles in panel (c) for solar zenith angles 90.0° is due to the absence of
direct radiation below the screening height.

4.5. PHOTODISSOCIATION RATES: 2-STREAM VERSUS MULTI-STREAM RESULTS

To estimate the error made by the TSA we have computed photodissociation rates
for the processes J(O3) : O3 + hv — Op + O(°P) and J(0%) : O3 + hv —
0O, + O('D) by the present TSA and by the DISORT algorithm run in 16-stream
mode. The 16-stream results are accurate to 3—4 digits and hence may be used as
benchmarks. The two processes J(O3) and J(O3) have been selected both for their
importance in atmospheric chemistry and for their different spectral dependence.
The rates were computed for surface albedos A, = 0.0, 1/3, 2/3, 1.0 and solar
zenith angles 0y = 0°, 7°, 14°, ..., 70°. Solar zenith angles larger than 70° were
not considered as spherical effects then may become important. Spherical effects
are included in the TSA but not in the standard multi-stream algorithm DISORT.
Rates were computed for clear Rayleigh scattering as well as cloudy and aerosol-
loaded atmospheres. Examples of the rates for the different conditions are shown
in Figure 6 for a solar zenith angle of 35° and surface albedo A, = 0.0. The J(O3)
rate, Figure 6a, for a cloudy sky increases relative to the clear sky values above
the cloud and decreases below the cloud. A similar behavior is seen for the J(O3)
cloudy sky rate, Figure 6b. However, in the stratosphere the cloudy sky J(O3%)
rate approaches the clear sky values. The J(O3) channel is produced mainly by
radiation with wavelength shorter than 310 nm. Relatively little of this radiation
penetrates to the Earth’s surface or to clouds in the lower troposphere. Hence, the
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Fig. 4. The aerosol extinction at 550 nm from the Shettle and Fenn (1989) aerosol models.
The solid line represents spring—summer conditions and the dashed line fall-winter conditions.

4.3.3. Water Cloud Model

The optical properties of the water cloud adopted here were calculated by the
parameterization scheme of Hu and Stamnes (1993). Assuming that the water
droplets are spherical, they used results of detailed Mie theory calculations as a
basis for developing an accurate and fast parameterization scheme. The variable
parameters are the liquid water content and the effective droplet radius. These two
parameters were found to be the only ones necessary to characterize the cloud
radiative properties accurately (Hu and Stamnes, 1993).

For the calculations presented below, the effective droplet radius was taken to
be 10.0 zm and the liquid water content 0.1 g/m3. The cloud base is at 2.0 km and
the cloud thickness is 1.0 km. The optical thickness of the cloud was about 15 at
visible wavelengths.

4.4. THE IMPORTANCE OF SPHERICAL GEOMETRY UNDER TWILIGHT
CONDITIONS

For zenith angles less than 75° the atmosphere may be assumed to be plane-parallel.
For larger solar zenith angles the curvature of the earth and its surrounding atmo-
sphere decreases the pathlength that a photon travels as compared with a corre-
sponding plane-parallel atmosphere. This is so because in plane-parallel geometry
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Fig. 6. The (a) O3 4+ hv — O(*P) + O, and b) O3 + hv — O('D) + O photodissociation
rates for clear (solid line), cloudy (dashed line) and aerosol-loaded (dotted line) conditions as
a function of altitude. The solar zenith angle is 35° and it is the accurate multi-stream results
that are displayed. A midlatitude summer atmosphere (Anderson et al., 1987) was used in the
calculation.

the TSA is largest in the troposphere (1.0-8.0%). The computation of the direct
beam is identical in the TSA and DISORT. Hence, any difference between the
results from the two arises from differences in the diffuse radiation. The increasing
error with decreasing altitude is thus due to the increasing importance of multiple
scattering as the atmosphere gets denser. Also the error increases with increasing
solar zenith angle. This is due to larger optical pathlengths for larger solar zenith
angles where multiple scattering becomes more important. When the surface albedo
is zero the TSA underestimate both J(O%) and J(O3) for all altitudes and zenith
angles, Figures 7a and 8a. For nonzero surface albedos (Figures 7b—7d and 8b—
8d), the magnitude of the error decreases and becomes positive for high altitudes.
This implies that the TSA overestimate the radiation reflected off the surface and
underestimates the multiply scattered radiation. For the conditions considered here,
the magnitude of the error made by the TSA for a Rayleigh scattering atmosphere
for the J(O3) and J(O3) rates is never larger than the combined uncertainties for
the appropriate cross sections and quantum yields (Table VI).

In Figures 9-10, we show results pertaining to a cloudy atmosphere. Photodis-
sociation in the J(O3) channel is overestimated by the TSA below and inside the
cloud and underestimated above the cloud for most albedos and solar zenith angles
(Figure 9). The error increases with increasing surface albedo and may be as large
as 60% below the cloud. However, in the stratosphere (15.0-50.0 km in the model
atmosphere used here) the error is negligible. For the J(O3) channel (Figure 10)
the situation is somewhat similar to the clear Rayleigh scattering atmosphere (Fig-
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Fig.5. The photodissociationrates J(O3) : O3+hv — O('D)+0zand J(03) : Os+hv —
O(®P) 4+ O, (lower panel) for different zenith angles and plane parallel and spherical geometry.
(a) Shows the photodissociation rates calculated in plane-parallel geometry for solar zenith
angles of 70, 80, 85, 86, 87, 88 and 89 degrees. (b) Shows the same rates in spherical
geometry. Finally in (c) we show results for angles between 85° and 95° in 1° steps using
spherical geometry. The relevant cross sections and quantum yields for the different reactions
are from DeMore et al. (1990) and references therein. For the O, Schumann-Runge bands the
parameterization of Allen and Frederick (1982) was used. The subarctic summer atmosphere
(Anderson et al., 1987) and a surface albedo A, = 0.0 was used in the calculation. Note the
different scale on the y-axis in the panels.

J(0%) rate is less sensitive to changes in surface albedo or cloudiness than the
J(03) channel which is produced by radiation with wavelength longer than 310
nm. The presence of aerosols leads to increased scattering in the atmosphere. This
can either lead to an increase or decrease in radiation depending on the change
in the single scattering albedo, solar zenith angle and surface albedo. For the
situation in Figure 6 the J(O3) photodissociation rate increases while the J(O3)
rate decreases.

In Figures 7-12, we show the percentage error between the TSA results and
the 16-stream computations. The clear sky results are shown in Figures 7-8. Both
for the J(O%) rate (Figure 7), and the J(O3) rate (Figure 8), the error made by
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Fig. 8.  As in Figure 7, but for the O3 + hv — O(*P) + O, photodissociation rate. Note
different scale on y-axis in Figures 7-12.

ure 8). However, the error is larger and for large surface albedo values, the TSA
may underestimate the J(O3) rate by up to 14% in the stratosphere. For more nor-
mal situations, i.e. lower surface albedos, the error is 2.0-8.0%. Below the cloud
the TSA is larger by about 30% for large surface albedos, but less than 3.0-8.0%
for more typical situations. Hence for certain albedos and altitudes the error made
by the TSA in the calculation of J(O3) and J(O3) for a cloudy atmosphere may be
as large or larger than the combined uncertainties for the appropriate cross sections
and quantum yields (Table VI).

The error made by the TSA for an aerosol-loaded atmosphere is shown in Figures
11-12. The J(O%) channel is underestimated by the TSA in the troposphere. For
small to moderate surface albedos (Figures 11a-b). For large surface albedos the
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Fig.7. The percentage error 100 x (J2 — J'¢)/J'¢ for the O3 + hv — O('D) + O; photodis-
sociation rate as a function of altitude and solar zenith angle for a clear Rayleigh scattering
atmosphere. J™ is the photodissociation rate from an n-stream calculation. A midlatitude
summer atmosphere (Anderson et al., 1987) was used in the calculation. Negative errors are
plotted with dottes lines and positive errors with solid lines. Note different scale on y-axis in
Figures 7-12.

TABLE VI The photochemical reactions shown in Figure 5. The
uncertainties shown represent the combined uncertainty for cross sec-
tions and quantum yields. They are not rigorous numbers, but quali-
tative estimates (DeMore et al., 1992)

Rate Reaction Uncertainty
coefficient (%)
J(03) O3 + hv — O(P) + O, 10.0

0 + hv — O('D) + 02 20.0

J(03)
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cloudy atmosphere. Note different scale on y-axis in Figures 7-12.

Here we estimate the error made by using the TSA as compared with more accurate
multi-stream calculations. Ultraviolet (UV-B: 280-320 nm and UV-A: 320—400
nm) and visible (photosynthetically active radiation, PAR, 400-700 nm) fluxes are
obtained by integrating the downward flux over wavelength (cf. Equation (17)).
To assess the accuracy of the TSA for computing downward fluxes we compare
two-stream and multi-stream results for UV-A, UV-B and PAR fluxes using the
same clear, aerosol-loaded and cloudy atmospheres that we considered for the pho-
todissociation rates. Note, however, that here the surface albedo was taken to be
Ay =0.0,0.1,0.2, ..., 1.0 and the solar zenith angle was increased in steps of
10° from 0° to 70°. Furthermore, the wavelength resolution is 1.0 nm. The uvspec
program of Kylling (1994) was used to compute the downward fluxes. The doses
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7-12.

TSA overestimates the .J(O%) channel (Figures 11c—d). The error may be as large
as 20%. Above the aerosol layer the error made by the TSA is small (< 1.0%). The
results for the J(O3) channel is displayed in Figure 12. For large solar zenith angles
the TSA underestimates J(O3) by as much as 12% below the peak of the aerosol
layer. The error decreases with increasing surface albedo. Above the aerosol layer
the error may be up to 9% for large surface albedos.

4.6. ULTRAVIOLET AND VISIBLE FLUXES: 2-STREAM VERSUS MULTI-STREAM
RESULTS

Several investigators have used different two-stream approximations to study sur-
face ultraviolet fluxes, e.g. Frederick and Lubin (1988), Briihl and Crutzen (1989).
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Fig. 12. As in Figure 7, but for the O3 + hv — O(’P) + O, photodissociation rate and an
aerosol loaded atmosphere. Note different scale on y-axis in Figures 7-12.

Here (o) is the transmissivity of the atmosphere for A = 0.0 and p} the spherical
albedo for illumination from below. For a cloudy atmosphere p} becomes large and
gives the non-linear behavior of the fluxes as a function of the albedo as shown in
Figure 13.

The percentage difference between the TSA and the accurate multi-stream com-
putations are shown in Figure 14 as a function of the solar zenith angle and the
surface albedo. Generally, the error made by the TSA increases with increasing
surface albedo and solar zenith angle, i.e. the error increases with increasing pho-
ton pathlengths. As noted above, the difference between the TSA and the accurate
multi-stream results are due to differences in the diffuse radiation. Hence, when
pathlengths gets longer and multiple scattering becomes more important, the dif-
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in Figures 7-12.

are computed from Equation (17) with the action spectrum taken to be A(\) = 1.0
for simplicity. The rates are instantaneous rates, i.e., they have not been integrated
over the day.

In Figure 13 we show UV-B, UV-A and PAR fluxes for a clear, cloudy and
aerosol-loaded atmosphere as a function of surface albedo. The shape of the curves
may be explained by noting that the transmittance of the atmosphere, 4 (uo), may
be written (Stamnes, 1982)

Agpy
1 — + PR LA S .
va(ro) = (ko) 1—- A pﬂ(uo)

gFs

(18)
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Fig. 14. The percentage difference between the TSA and the accurate multi-stream calculations
for UV-B (upper panel), UV-A (middle panel) and PAR (lower panel). Results for clear (first
column), aerosol-loaded (second column) and cloudy (third column) atmospheres are displayed
as functions of the solar zenith angle and the surface albedo. Negative errors are plotted with
dotted lines and positive errors with solid lines.

absorption by ozone, oxygen and nitrogen dioxide was included and the wavelength
resolution was the same as for the calculation of the photodissociation rates. Both
the warming and cooling rates were computed from Equation (16). The terrestrial
cooling rates were computed with a quadrature angle ; = 1/2. Computations
performed with u; = 1/+/3 exhibited larger errors.

The warming/cooling rates for a clear, cloudy and aerosol-loaded atmosphere
are shown in Figure 15. The difference between the TSA and the accurate multi-
stream computations is displayed in Figure 16. The error in the warming rate is
small for the clear and the cloudy atmosphere (Figure 16b). For the aerosol-loaded
atmosphere the TSA underestimates the warming rate by 1.0 K/day at the altitude
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TABLE VII. Upper limits for the solar zenith angle, 6y,
and the surface albedo, Ay, if 10.0% or less difference
between the TSA and the accurate multi-stream results is
to be achieved

UV-B, clear sky Ay < 0.65 and 6y < 68.0
UV-B, aerosol loaded sky A, < 0.5 and 8y < 64.0
UV-B, cloudy sky Ag < 0.42 and 6y < 58.0
UV-A, clear sky Ag < 0.950r 6y < 60.0
UV-A, aerosol loaded sky Ay < 0.62

UV-A, cloudy sky Ay < 0.48

PAR, clear sky -

PAR, aerosol loaded sky -

PAR, cloudy sky A, <0.48

ference between the TSA and the multi-stream results increases. As can be seen
from Figure 14, the error made by the TSA can be substantial for UV-B, UV-A and
PAR fluxes for clear, cloudy and aerosol loaded atmospheres. If an error of 10.0%
in downward fluxes is acceptable, the upper limits for the solar zenith angle and
the surface albedo that give errors < 10.0% are as listed in Table VII. Care should
be exersized when using the TSA to compute downward fluxes for solar zenith
angles greater than 60.0° or surface albedos greater than 0.5.

4.7. WARMING/COOLING RATES: 2-STREAM VERSUS MULTI-STREAM RESULTS

To estimate the accuracy of the TSA in realistic applications for thermal sources we
computed atmospheric cooling rates for the same clear, aerosol-loaded and cloudy
atmospheric situations as considered above. We also computed warming rates to
demonstrate the error incurred by using the TSA. The cooling rates are computed
using the correlated-£ distribution method (Lacis and Oinas, 1991). Absorption by
carbon dioxide, ozone and water molecules is accounted for. For the warming rate,
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5. Summary

We have described a robust and reliable two-stream algorithm for radiative transfer
computations, including multiple scattering, in vertically inhomogeneous pseudo-
spherical media. This two-stream algorithm is essentially a ‘stripped-down’ version
of the multi-stream (DISORT) algorithm (Stamnes et al., 1988) and therefore con-
tains all the advanced features of this unconditionally stable algorithm. However,
it also contains the following new and unique features:

(1) It includes the effect of spherical geometry, both in the direct and the diffuse

radiation.
(2) Itincludes an exponential-linear-in-depth approximation to the internal source
allowing for efficient treatment of sources that vary rapidly with depth.

We have used this two-stream algorithm to investigate the accuracy of the two-
stream approximation (TSA) in vertically inhomogeneous atmospheres, by comput-
ing photodissociation and warming/cooling rates and surface ultraviolet and visible
fluxes for clear, cloudy and aerosol-loaded atmospheres. The two-stream results
have been compared with accurate multi-stream computations. The Oz + hv —
O(!D) + O, and O3 + hv — O(3P) + O, photodissociation rates were considered
for solar zenith angles between 0.0-70.0° and surface albedos in the range 0.0-1.0.
For small and moderate values of the solar zenith angle and the surface albedo the
error made by the TSA is generally smaller, < 10.0%, than the combined uncer-
tainty in cross sections and quantum yields. Surface ultraviolet and visible fluxes
were calculated for the same range of solar zenith angles and surface albedos as
the photodissociation rates. It was found that surface ultraviolet and visible fluxes
may be calculated by the TSA with 10% or less error for solar zenith angles less
than 60.0° and surface albedos less than 0.5. For large solar zenith angles and/or
large surface albedos, typical conditions at high latitudes, the error made by the
TSA may become appreciable, i.e. 20% or more for the photodissociation rates
in the lower stratosphere and for ultraviolet and visible surface fluxes for large
surface albedos. The TSA agrees well with multi-stream results for computation of
warming/cooling rates except for layers containing scattering matter where errors
up to 10% may occur.

Finally it is noted that the general form of the internal source, cf. Equation (22),
makes the present algorithm suitable for solving particle transport problems, as
demonstrated by Stamnes et al. (1991).

Copies of the FORTRAN77 program are available by anonymous ftp to cli-
mate.gsfc.nasa.gov or else on floppy disk (IBM or Macintosh) from the third
author.
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Fig. 16.  The difference between the TSA and the accurate multi-stream calculations for
(a) the terrestrial and (b) the solar part of the spectrum. Results for clear (solid line), cloudy
(dashed line) and aerosol-loaded (dotted line) atmospheres are shown.

where the maximum aerosol concentration is. The cooling rate is accurate to less
than 0.7 K/day at all altitudes and for all three atmospheric conditions except inside
the cloud for the cloudy atmosphere where the TSA underestimates the cooling
by 1.8 K/day which is about 10% lower than the value obtained by the 16-stream
calculation.
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we get after insertion of Equation (23) into Equations (7)—(8), and equating coef-
ficients of like powers of 7

abXf + (1 —a+abF au) X

YiE = , 24
U= = a) (1 —ax2ab) — (au 2 (24)
+
Yoi= abZ5F+(1—a+ab:Fa,u1)Z02 ’ 25)
(1 —a)(1 —a+2ab) — (1)
where
ZE = XF £ mY®E (26)
We may thus write the full solution to Equation (1) for layer p as
LX() = Cp gy (£m)e™ + C g (Lp)e™ ™ +
—a? —oP
+e % (Y, + Yoy 1) +e7 (YR L+ YR ,7), 27)

where the b superscript stands for the direct beam pseudo source and P for the
internal thermal source.

A.3. BOUNDARY CONDITIONS

We allow the medium to be illuminated from above by known uniform incidence
of particles or radiation (incident parallel beams are treated as pseudo sources)

IT (7 =0) = F®. (28)
Furthermore, across layer interfaces we require the intensities to be continuous
L¥(rp) =I5 (m), p=1,...,L—1. (29)

Finally, the medium may be forced by uniform incidence at the bottom boundary
due to Lambertian reflection and/or emission of particles or radiation. If the bottom
boundary has temperature T, emissivity e and behaves as a Lambertian reflector
with albedo A, then

If(r) =19 = 2A,u1I; (11) + €B[T,]. (30)

A.4. SCALING TRANSFORMATION

Insertion of Equation (27) into Equations (28—(30) would give us a complete
set of linear algebraic equations to solve for the constants of integration C’;,t.
However, to avoid ‘catastrophic’ numerical ill-conditioning, it is necessary to
remove the positive exponentials in Equation (27). This is achieved by the scaling
transformation (Stamnes and Conklin, 1984)

Ct = Cletrm!, @31)
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Cy =Cretem, 32)

Insertion of Equation (27) into Equations (28)—(30) using Equations (31)—(32)
yields

C~’1‘D1e"Cm + CN’f = F* - R (0), (33)
Cy Dy + Cre ™ =m-t) — G Dy ekt ori=me) — CF

_ - P+l (34)
= Rp+l(TP) - Rp (Tp),

C~’p_ + é;Dp e kp(p—Tp-1) _ C;+le—kp+l(7p+1—7p) _ é;-+1Dp+l

= RY\ () - Ri(n), p=1,..., L-1 4
C;(1 =24, Dy) + CF(Dy, — 2Agu1) e kere=me-1) 56
=24, R7 (71) — R} (L) + €, B[Ty],
where
RE(r) = Ry(r, +m) =™ (YF , + Y 1)+ )

e (YA, + YA 7).

Equations (33)—(36) constitute a (2 x L) x (2 x L) system of linear algebraic
equations from which the 2 x L unknown coefficients C’;E =1, ..., L)are
determined. The coefficient matrix is pentadiagonal and may be inverted by special
routines for banded matrices, e.g. LINPACK (Dongerra et al., 1979). The speed of
solving this pentadiagonal system is linear in L, the number of layers (Stamnes and
Conklin, 1984). As pointed out by Toon et al. (1989), Equations (33)—(36) may be
rewritten in tridiagonal form as follows:

CrDie ™™™ + Cf = F$ — R (0), (38)

(1- DP‘DIH'I)ép— + (Dp - Dp+1)e'k”(7”_71’")é}',"—
— (1= Dy ) e rrirn=mlC (39)

= :+1<Tp) - R;_(Tp) = Dpi(R, () — R, (1)),

(1 = D2)e=*2(p=7p-1)CF + (D, — Dpy1) e‘kp+‘(7p+1‘TP)C’;+l—
—(1 - Dpr+1)C:+l “0)
=Ry 1(mp) = Ry (1) = DP(R;+1(TP) — R} (1)),
p=1,...,L—-1,
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Cr(1 =244 D) + CH(Dyp, — 24,1 )eFLlre=mo-1)
=2Agu Ry (11) — Rf(11) + €, B[T).

The computer time needed to solve this tridiagonal matrix is still linear in L and
is thus in principle not any faster than solving the pentadiagonal matrix. However,
tridiagonal solvers (Vetterling et al., 1985) are compact and significant computing
efficiency may be lost in more general solvers due to ‘overhead’ operations. Gen-
erally, pivoting is not incorporated into tridiagonal solvers. During the test phase
of the present two-stream method with the ‘tridag’ tridiagonal solver (Vetterling
et al., 1985) we encountered several cases where tridag ‘broke down’ resulting
in erroneous radiative quantities. Running ‘tridag’ in double precision only partly
cured the problem. Thus, pivoting should be included when solving for the con-
stants of integration. To get both a fast and numerically stable code we thus use the
LINPACK routines SGBCO and SGBSL to solve the tridiagonal matrix, (Equa-
tions (38)—(41)), in the present two-stream method. These LINPACK routines are
designed to solve a general banded matrix and include pivoting. Vectorized ver-
sions of these routines are also available and may be of interest to users with ‘vector
machines’.

(4D

A.5. SCALED SOLUTION

Finally, by incorporating the scaling into the homogeneous solution the intensity
in the directions £ may be written as

L7 (1) = CyDye ™ (m=7) 4 Gk e~kelm=-) L R (7, —py), 42)

IF(r) = é’;e_k"(T"_T) + C’;’Dp e ke(T=T-1) Ry(1, +p1). (43)
We note that the arguments of the exponentials in the scaled solutions are now
negative implying that numerical overflow is avoided in the computation. It should
also be noted that Equation (42)—(43) allows us to compute the radiation field at any
optical depth in the medium, since similar analytic solutions exist for all layers.

Appendix B. The Chapman Function
The Chapman function for zenith angles 8y < 90° is given by (e.g. Rees, 1989)

ch(zg, o) = Za]/ nj(z)\/ (44)

1- " sm2 By

and for zenith angles greater than 90° by
Ch(Z(), 9()) =

o0 d *® d 45
=Yooz [ ne——s- [ : @
7 25 R+z) 20 \/1 (R+z

1 - (——a
R+z R+2

2 .
) sin? §,
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o

Fig. 17. Geometry for calculation of the Chapman function in a spherical layered atmosphere.
In (a) for solar angles 8y < 90.0° and in (b) for solar zenith angles 8y > 90.0°.

Here n;(z) is the number density of the j’th species and o; the corresponding cross
section. The radius of the planet in question is denoted by R, z; is the screening
height and zp the height at which the optical depth is desired. The above integrals
may generally not be evaluated analytically. We use the approach of Dahlback
and Stamnes (1991) in which the plane-parallel optical depth of each layer A7; is
modified by a geometric correction factor As;/Ah;. With reference to Figure 17
the thickness of each layer Ah; = r; — r;41, where ;1 = OA and r; = OB.

Furthermore, As; = AB = GB — GA = /r? — 12sin’fo — \/r2,, — 12 sin? 6,
since OG = r2 sin” 6 and r,, = OP. Thus for 6y < 90° we have

ch(zo, 6p) im As; (46)
2| = TTA 1
0y, Y0 — Ahz
and for 6y > 90°
P AS,‘ L As; ASL
= i +2 P >
ch(zg, 6o) ;AT AR, + iz%':]AT Ah, + ATy, Ah, 47

where L is the deepest layer in the atmosphere for which the attenuated direct
beam is non-negligible. We have compared this simple evaluation of the Chapman
function with more elaborate evaluations of the integrals in Equations (44)—(45).
For a variety of zenith angles between 80° and 95° and for different optical thick-
nesses excellent agreement was found (L- Perliski and S. Solomon, 1991, private
communication).
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